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J. Phys. A: Math. Gen. 18 (1985) 3491-3503. Printed in Great Britain 

The Galilean relativistic principle and nonlinear partial 
differential equations 

W I Fushchich and R M Cherniha 
Mathematical Institute, Academy of Sciences of Ukrainian SSR, Repin Street 3, Kiev-4, 
USSR 

Received 7 March 1985 

Abstract. The second-order partial differential equations invariant under transformations 
of Galilei, rotation, scale and projection are described. 

1. Introduction 

From the mathematical point of view the Galilean relativistic principle (in a restricted 
sense) is nothing other than the requirement of the equations of motion to be invariant 
under the linear transformations 

t +  t ' =  t x, + x:, = x, + vat a = l , 2 , 3  

U, being transformation parameters (.the inertial reference system velocity U com- 
ponent). These transformations form a three-parameter Lie group. In order to construct 
linear and nonlinear partial differential equations ( PDE) 

Y U (  t ,  x)  = 0 x = ( X I , .  . . , X") 

(where Y is a linear or  nonlinear operator, which is invariant under the Galilean 
transformations) it is also necessary to give the law of transformation for the dependent 
variable of U (  t ,  x). Under different transformation laws of the function U ( f ,  x) we 
obtain different classes of PDE. 

As is well known, the linear heat equation in the ( n  + 1)-dimensional space 

AU = AU, A = a2/ax:  + . . . + a2/ax: U =  U ( t , X )  

U, = U, = a  u/at A =constant 

is invariant under the following transformations: 
- 

t +  t ' =  t x, + x:, = x, + L;,t a = l , n  (1.2) 

U + U' = exp[ - t U, ( x, + t v a t ) ]  (1.3) 
U, being the transformation parameters. 

(1.3) defines the transformation law for the dependent function U (  t ,  x)  under the 
Galilean transformations (1.2). 

The ;( n 2 +  3n +6)-dimensional algebra with basic elements 

G, = ta, -&ix,Ua, a, = d/ax, a U  = a / a U  a = l , n  
- 
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2 a b  = X a d b  - X b a a  a # b  a, b== (1.4b) 

n =  t2a,+tx,a,-(aAIxi2+~nt)ua, ] X I 2  = x,x, ( 1 . 4 ~ )  

9 = 2ta, + x , a ,  + kUau k = constant (1 .4d)  

Po = a ,  P, = a ,  ( 1.4e) 

(where the repeated indices imply summation) is maximal in the Lie restriction 
invariance algebra ( I A )  of ( 1 . 1 ) .  

The set of operators (1.4) forms a Lie algebra, which will be noted by the symbol 
SLi ( 1 ,  n ) ,  i.e. the special Lie algebra. This name is natural because in the previous 
century Lie (1881) (see also Ovsyannikov 1978) was the first to calculate the maximal 
IA of the two-dimensional U ( ? ,  x l )  heat equation. The maximal I A  of the (3+  
1)-dimensional Schrodinger equation, which coincides with (1.1) (differing only by 
constant coefficients), was calculated by Niederer (1972). For some more details on 
this, see, for example, Fushchich and Nikitin (1981, 1983). 

From the group-theoretical point of view (1.3) defines the projective representation 
of the group (1.2). Apart from the projective representation (1.3) the group (1.2) has 
another representation, the infinitesimal operator of which 

* - 
G, = ta, a = l , n  (1 .5 )  

being different from the G, operators ( 1 . 4 ~ ) .  
The operators ( 1.5) generate the following transformations: 

t +  t ' =  t x, + x:,  = x ,  + v,t U +  U ' =  U. (1.6) 

We call (1.2) and (1.3) the projective Galilean transformations ( PGT) and (1.6) the 

Equation (1.1) admits operators ( 1 . 4 ~ )  but does not admit operators (1.5). 
In § 2 we describe the nonlinear second-order PDE 

Galilean transformations (GT). 

F ( t , x ,  U, U,, U, 1 I I  U ) = - A U + A ( t , x ,  U ) U , + B ( t , x ,  U, U ) = O  I (1.7) 

where 

U =  ( U I ,  . . . , U") 

U, = a Ulax ,  

U= ( U,, ,  UlZ, ' . ' , U n n )  
1 1  

- 
U,, = a2u/ax, axb 

F, A, B being arbitrary differentiable functions, invariant under the PGT (1.2) and (1.3) 
as well as projective and scale transformations generated by operators ( 1 . 4 ~ )  and (1 .4d) .  

a, b= 1 ,  n 

In § 3 we construct the most general nonlinear PDE of the form 

F( t ,  x ,  U, U,, U, U,, UOl,. . . I U,,, 11 U )  = 0 a2 u/at ax, = U,, (1.8) 

which are invariant under the GT (1.6) and the translation group generated by the 
operators (1.4e). In particular, it is established that a set of equations of the form 
(1.8) does not contain linear equations (except, obviously, U, = 0, U,, = 0) invariant 
under the GT (1.6) and the group of time and space translations. 

In the final part of 0 3 we give several examples of Galilei invariant equations in 
independent variables ( t ,  x , )  space, for which general solutions are constructed. 

It is to be noted that equations of the class (1.7) are widely used to describe 
nonlinear diffusion, heat and other processes. In particular, this class includes diffusion 
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equations of the form 

as well as nonlinear Schrodinger equations (if U is a complex function) and Hamilton- 
Jacobi equations. The group classification of (1.9) for the one-dimensional case was 
carried out by Ovsyannikov (1959) and for the three-dimensional case by Dorodnitsyn 
et a1 (1983) and Fushchich (1983). 

2. Equations invariant under the projective Galilean transformations 

First of all in this section we are going to find the conditions to be imposed on the 
functions A and B under which (1.7) is invariant under the PGT (1.2) and ( 1.3). The 
complete solution of this problem is given by the following theorem. 

Theorem 1 .  Equation (1.7) is invariant under the PGT if and only if 

]XI2 = x,xa w = U e x p ( t )  A 1xI2 

wa= ( Ua++A-U y ) exp ( A t 1 2 )  - a=- 

and f; g are arbitrary differentiable functions. 

Proof: To prove the theorem let us use the Lie method (for a modern account, see 
Blumen and Cole (1974), Ovsyannikov (1978) and Ibragimov (1983)). According to 
Lie’s approach, (1.7) is considered as a manifold in the space of the following variables: 
t, x, U, U, U. (1.7) is invariant under the transformations generated by an infinitesimal 
operator 

1 11 

when the following invariance condition is fulfilled: - 
2 ~ =  ~ ( - A u  +AU,+ B ) I ~ = ~ =  o (2.5) - 

where 2 is the second prolongation of the infinitesimal operator X ,  i.e. 

- - a a - x = x + p &l( t, x, U )  - + fTp ” ( t, x, U )  - p, v = 0, n a UP a U,” 



3494 W I Fushchich and R M Cherniha 

- 
a = 1 ,  n. (2.7) 

After explicit expressions for p,, U,' have been substituted into (2.7) and the 
obtained relation being split into separate parts for coefficients at U,, and Uab, a # b, 
the conditions for 6" are found: 

6: = a t Q / a x ,  = o 5; = a t* / aU = 0 5:+5j:=0 
- (2.8) 

a # b  a, b== p =0, n. 

After taking into account (2.8) the invariance condition, 
form, is given by 

written in its complete 

(2.9) 

In our case, taking into consideration the explicit form of the operators ( 1 . 4 ~ )  the 
coefficient functions tp,  7 of the operator X are written in the form 

t o = o  5" = g a t  7 =-$A gaxa U 
where g,, a == ark arbitrary parameters. 

Having used the explicit form of 5" and q as well as the arbitrary nature and 
independence of the parameters g,, (2.9) is reduced to the following linear differential 
equation system, which enables one to find the functions A( t ,  x, U )  and B (  t, x, U, U ) :  

1 

aA aA - 
t - -  $AX, U- = 0 a = l , n  
dxa au (2.10) 

2 - 
A + x , B - -  U a ( A - A )  = O  a = 1 ,  n .  (2.11) 

Thus, the proof of the theorem is reduced to the construction of the general solution 
of the strongly overdetermined system (2.10) and (2.11) consisting of 2n equations for 
the functions A and B. 

Now let us proceed in using the standard method to find the solutions of the 
first-order PDE (see, e.g., Courant and Hilbert 1951). 
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Let us write the system of characteristic 
corresponding to the system (2.10) 

dx, d U  - - a = l , n .  
t -SAX, U 

3495 

ordinary differential equations (ODE) 

(2.12) 

From (2.12) we obtain two invariants necessary for the construction of the general 
solution of the system (2.10): 

w = U exp( 7) A /XI2 WO = t. (2.13) 

Consequently, the general solution of (2.10) is determined by invariants (2.13) and 
has the form 

(2.14) 4 4  x, U )  =f(w,  WO) 

where f is an arbitrary differentiable function. 
Now let us write the characteristic system of ODE (2.11): 

necessary for 

The function 

In (2.15), contrary to all the previous ones, the repeated indices do not mean summation. 
Having solved the system (2.15) we obtain the following system of invariants 

the determination of the function B :  

w = U exp( 7) A lx12 w,, = 1 

(2.16) 

B is, consequently, determined from the functional equation 

4(w, WO, WI, . . * I  wfl, I )  = 0 (2.17) 

which gives us the general solution of (2.11): 

where g is an arbitrary differentiable function. 

under PGT, completing by this the proof of the theorem. 
Thus, we are able to construct all the equations of the form (1 .7) ,  which are invariant 

Consequence 1. If one supposes the coefficient B in (1 .7)  to be independent of the 
derivatives U, then 

1 

AU=AUO+Ug(w, t )  (2.19) 
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is the most general equation, invariant under the PGT, g being here a n  arbitrary 
differentiable function. 

A class of equations (1.7) with coefficients (2.1) and (2.2) contains as a subclass a 
set of equations which are invariant under the operators (1.46) of the rotation group. 
The complete description of (1.7) which admits both operators ( 1 . 4 ~ )  and (1.46) is 
given by the following theorem. 

Theorem 2. Equations from the class (1.7) are invariant under the operators (1.4a) 
and (1.46) if and only if they have the form 

A U = f ( w ,  t ) U t +  U g ( w ,  wowa, t ) + ( f ( w ,  t)-A)(“+-U) x U, Alxl2 
t 4t2 

(2.20) 

where 

This theorem is proved in the same way as the first one. The only difference is that 
one should substitute into the invariance condition (2.9) the coefficients A and B from 
(2.1) and (2.2) and the values of lP, 77 from (1.46). 

It should be noted that equations of the form (2.19) are obtained as a particular case 
of (2.20), i.e. when the function B in (1.7) is independent on the derivatives U. 
Invariance under PGT automatically implies invariance under the rotation group. 

The further restriction of the class of equations (2.19) is achieved by the requirement 
for the equations to be invariant under the projective operator n ( 1 . 4 ~ )  and the operator 
of scale transformations 9 (1.4d).  The two following theorems are proved in quite a 
similar way to the ones above. 

Theorem 3. Among equations (2.19) only equations 

U 
A U = AU, + I g (  t t ” ’ 2 w )  (2.21) 

where g is an  arbitrary differentiable function, admit the operator n ( 1 . 4 ~ ) .  

Theorem 4. Among equations (2.19) only equations 

U P 
t n l 2 w  = - x constant 

6 
(2.22) 

A = constant p =constant 

where 

E (  t ,  x) = [-(-)”‘I 1 A  ” exp( - t) A1Xl2 
2 at (2.23) 

is a fundamental solution of ( l . l ) ,  admit the operator Il ( 1 . 4 ~ )  and the operator 

~ = 2 t a 1 + x , a , ~ + ( 2 / P - n ) U a . .  (2.24) 
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Note 1 .  If one implies p = 0 in (2.22), the obtained equation has the form 

A U = A U ,  + A ,  ult2 (2.25) 

which may be reduced to (1.1) by means of the local substitution 

U = W(t ,  x )  exp(A,/At) AZO. 

Note 2. The coefficients of all classes of equations constructed above contain (explicitly 
or implicitly) the fundamental solution E ( ? ,  x)  of (1.1). This is apparently due to the 
fact that ~ ( t ,  x)  (with an approximation to an arbitrary constant) is the complete 
solution of the system 

AU=AU, 

G, ( U )  tuQ +$Ax, U = 0 a = l , n .  (2.26) 
- 

Note 3. The above theorems may be generalised for the systems of equations of the form 

AU'kl  = A'k'( t, x, U"' ,  . . . , U'"'') U?' 

+ B ( k ) ( t ,  x, U'", . . . , U'") k = 1 , 2  , . . . ,  m. (2.27) 

In particular, amongst the equations (2.27) only equations 

A U ' k ' = A U g ' +  U ' k ) g ' k ) ( t ,  w " ' ,  . . . , w'" ' ) )  k = 1,2,  . . . , m 
where w i k '  = U'k' exp(Alx12/4t), gik' are arbitrary differentiable functions, are invariant 
under the Galilean transformations with the infinitesimal operators 

3. The second-order equations, invariant under the Galilean transformations 

In this section we shall construct all the equations of the form 

U , = C ( t , x ,  U ) A U + K ( t , x ,  U, U )  (3.1) 

where C (  t ,  x, U ) ,  K (  t ,  x, U, U )  are arbitrary differentiable functions, invariant under 
the operators Ga (1.5), gendrating the GT (1.6). Also we shall distinguish all the 
second-order equations of the form (1.8) which admit the following operators: 

I - 
G, = tP, P, = a Q  P,, = a,  a = 1 ,  n .  (3.2) 

These operators satisfy the commutational relations 

['Q) ' b l = O  [P,, P,I = 0 [ '01 = - 'Q' (3.3) 
It turns out that the class of such equations is rather broad. In particular, it contains 
the many-dimensional Monge-Ampere equation (see Fushchich and Serov 1983) and 
the non-relativistic analogue of the latter. All these equations are considerably non- 
linear, and as a rule they cannot be reduced to the form containing a linear plus a 
nonlinear term. 

The following statement gives the solution of the first problem, which was posed 
at the beginning of this section. 
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(3.4) 

(3 .5)  

where f, g are arbitrary differentiable functions. 
To prove this theorem one should repeat the same procedures used in p rovhg  

theorem 1 ,  with the only obvious difference that the coefficient functions of the G, 
operator, i.e. 

- p = o  5" = g a t  a = l , n  T / = O  

should be substituted into (2 .9) .  

Now let us formulate several more statements, giving the complete description of the 
equations of class (3.1), invariant under C?,, 2ab and the operators 

li = t 2 a ,  + txaaxa 

9 = 2ta, + xaaxn. 

(3.6) 

(3.7 
- 

Theorem 6. Among the set of equations (3.1) only the equations given by 

ur=f(t, U ) A U + g ( t ,  U, w n + , ) - X a u a / t  
(3 .8 

~ n + l =  uaua U, = a u / a x ,  

are invariant under the operators C?, and jab, a, b =-. 

n e o r e m  7. (3.8) is invariant under the projective transformations generated by the 
operator (3 .6)  if and only if 

f ( t ,  U ) = f ( U )  g ( t ,  U, w n + , ) = t - 2 i ( U ,  t 2 w n + l )  (3.9) 

where f ,  s' are arbitrary differentiable functions. 

Theorem 8. Amongst equations of the form (3.8) only equations 

U, = f( U )  A U + U, U,i( U )  - x, U, / t (3.10) 

are invariant under the projective and scale transformations generated by the operators 
(3.6) and (3 .7) .  

Theorem 9. The maximal IA of the simplest linear equation from the class (3.10): 

U , = A A U - x , U , / t  A = constant 

is an algebra SLi ( 1 ,  n )  with basic operators: 

G, = ta, daab = X a d b  - X b a ,  

I = Ud" 17 = tzar  + t ~ , d , ~  

(3.11) 
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Note 4. (3.11), by means of the local substitution 

U =  W(t,x)t"'2 exp( z) 
or, in the equivalent notation, 

may be reduced to (1.1) for the function W(t ,  x). 

Note 5. The classes of equations given in theorems 5 and 6 can be obtained from the 
equations given in theorems 1 and 2. For this purpose it would be enough to apply 
the above substitution from note 4. 

Note 6. Equations invariant under GT (1.6) (see theorem 5 )  can be transformed by 
means of the substitution of the independent variables 

t = O ( t ' )  
- 

x, = e( t')x, + e'"'( t ' )  a = l , n  

where O ( t ' )  f constant, e'", a =fi being arbitrary differentiable functions, to the 
equations given by 

U : , = f ( t ' ,  U ' ) A U ' +  g ' ( t ' ,  U ' ,  U ' )  
1 

where 

U'(  t ' ,  x') = U (  t, x) 

d0 
d t  

f ' ( t ' ,  U ' )  = y ( o ( t ' ) ) - * f ( o ( r ' ) ,  U ' )  

d0 
g' ( t ' ,  U ' ,  t . " ) = d t ' g ( O ( r ' ) ,  U ' ,  u(o(t'))-') 

In particular if 
- e( t ' )  = t' e(,)( t ' )  = o a = l , n  

one obtains the equations 

U:,  = t ' - ' f (  t ' ,  U')A U' + g( t ' ,  U ' ,  U - ' ) .  
1 

Consequence 2. It follows from the theorems given in §§ 2 and 3 that the nonlinear 
diffusion equation (1.9) is invariant neither under PGT (1.2) and (1.3), nor under GT 

(1.6). It means that the Galilean principle of invariance is not satisfied by (1.9). 
Nonlinear equations, invariant under PGT and x and t translations, are obtained by 
Fushchich (1984). 
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Now let us proceed in solving the second problem: to describe all the second-order 
equations 

(3.12) 

in the two-dimensional space (x,, x,), which are invariant under GT and  translations 
generated by operators (3.2). 

F(x0, XI, U, U,, u1, uoo, U015 U , , )  = 0 

Theorem 10. Amongst the set of equations (3.12) only the equations given by 

F,( w‘” ,  w ( I 1 ) ,  U, U, ,  Ull)  = 0 (3.13) 

are invariant under GT (1.6) and translations. 
(3.13) contains the following notation: 

(3.14) 

of the determinant of matrices, the elements of which are the first- and  second-order 
derivatives of the function U. Here F,  is an  arbitrary differentiable function. 

ProoJ: The invariance of (3.12) under translations, i.e. operators Po, PI, is equivalent 
to the requirement 

aF aF 
- -0. 

a x ,  ax, 
(3.15) 

Taking into account (3.E5) we obtain the following expression for the action of the 
twice prolonged operator X on the manifold (3.12) (see (2.6)) 

p, u = o ,  1. 
a F  

q--+ p”-+ a”y- 
dU au, (3.16) 

The coefficient functions of operators {G,} are given by 

p = 7 7 = o  6‘ = t. (3.17) 

The coefficient functions { p ” }  = {po,  p , } ,  {a”’} = {aoo, a’’, U”, a’‘} are determined 
from the formulae given in 0 2. Taking into account (3.17) we obtain 

(3.18) 

With the help of formulae (3.17) and (3.18) the invariance condition (3.16) can 
easily be reduced to the following linear PDE for the function F :  

aF aF dF 
U, - + 2 U,, - + U, 1 - - 0  - a U0 d u o 0  duo1 

(3.19) 

which can be readily solved. The general solution of (3.19) is an  arbitrary differentiable 
function 

F = F,( w “ ) ,  w ‘” ’ ,  U, U, ,  U , , )  

which depends on five variables. The theorem is proved. 
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Theorem 10, without any substantial complications, is generalised for the case of 
( n  + 1)-dimensional space 

(3.20) 

i.e. we have the following theorem. 

Theorem 1 1 .  Amongst equations of the class (3.20) only equations given by 

F](  w(I), w y  U, U, U )  = 0 (3.21) 
I I 1  

are invariant under GT (1.6) and xo, xl, . . . , x, coordinate translations, where 

Note 7. In the specific case when 

F1 = w("' = det( U,,) = 0 U,, = a2 ulax, ax, 

a many-dimensional Monge-Ampkre equation is obtained, the group properties of 
which have been studied by Fushchich and Serov (1983). 

Note 8. In the case 

F , = w ' " - A = O  A =constant 

the maximal IA of this equation is generated by an operator 

a a x = 5"-+ 7- 
ax, au 

to = Coot + do 5" = C a d S b + f a ( t )  a, b== 

T = C U + d  C =  
C,+2(C, ,+.  . .+ C,,) 

n + l  

(3.23) 

(3.24) 

where C,, Cab do, d are arbitrary constants, andf,(t), a == are arbitrary differenti- 
able functions. 

It means that the maximal I A  of (3.23) is infinitely dimensional. In particular, this 
algebra contains operators of the form 

ax,,, axa, a U, xbax, a # b  a , b = l , n  ( 3 . 2 5 ~ )  
- 
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N o t e  9. It is possible to construct a general solution for the two-dimensional equation 

w(I) = der( " 
U10 

= 0. ( 3 . 2 6 )  

To prove this, we represent ( 3 . 2 6 )  as follows: 

and then we obtain the general solution 

U = F ( x ,  + G ( x o ) )  

where F and G are arbitrary differentiable functions. Direct verification shows that 

U = F ( T a x a + G ( x , ) )  a = l , n  To = constant 
- 

L 

is a particular solution of ( n  + 1)-dimensional equation ( 3 . 2 3 )  under A = 0. 

= F (  U )  ( 3 . 2 7 )  

where F (  U )  is an arbitrary twice differentiable function, can be reduced to ( 3 . 2 3 )  at 
A = 1 for the function W ( x o ,  . . . , x n )  by the substitution 

w= [ F (  u ) ] - l ' ( n + 1 )  d U, J 
N o t e  1 1 .  Maximal IA of the equation 

w") = F (  UaUa) uaua = U:+. . .+ U', 

is generated by the basis operators ( 3 . 2 5 ~ )  and 

axe, axe, au, xa&, - X d x ,  a # b  a , b = G  

9 = ( l - n ) a % + x a a x a +  UaU. 

In particular, in the case of n = 1 for equations of the class ( 3 . 2 8 )  

( 3 . 2 8 )  

( 3 . 2 9 )  

( 3 . 3 0 )  

one can obtain the general solutions, namely U = F ( x ,  e-xo+ G ( x , ) )  is the general 
solution of ( 3 . 2 9 )  and qb(  U, x,U + G ( x o )  - x , )  = 0 is the general solution of ( 3 . 3 0 )  
written in an implicit form, F, G, qb being arbitrary differentiable functions. 
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In conclusion, we note that among the Galilei invariant equations (3.21) one can 
distinguish a class of equations 

U, = A ( U, U)A U + Q( U, U )  - w("')/ w("' 

0 U,  . . .  U, 
U,,  U, ,  . . . U,,  

U", U,, , . . U,, 
. . . . . . . . . . . . . . . . . .  

(3.31) 

A, Q being arbitrary functions. 
As to the structure, equations of the form (3.31) are diffusive type nonlinear 

equations with a strongly nonlinear addition. The properties of (3.31) will be studied 
by us in a further paper. 
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